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CALCULATION OF TRANSIENT RESPONSE
FROM TIME-HARMONIC SPECTRUM

By J H James

1. INTRODUCTION

Transient response calculations frequently reveal physical features which
are difficult to extract from the corresponding time-harmonic spectra, seefor example James (1). In order to facilitate transient sound radiation
and scattering calculations a Fortran program (2) has been written to
produce transient time histories from user supplied time-harmonic spectra
together with user selected time excitations. Numerical examples
demonstrated that the program is a valuable tool for transient far-field
radiation and scattering computations. It was noted that while the program
had been designed for calculations of transient far-field pressure the
amendments required for it to he usable for other transient response
problems were trivial.

These amendments have now been made and it is the purpose of this report to
provide an update to the theoretical work and numerical examples. Much of
the text also appears in the previous version (2) which has a limited
availability.

2. TRA4SIENT RESPONSE

a. General Response

The solution of time-harmonic response problems at time t and field-point x
can be expressed in the form

p(x,t) = S(x,A)exp(-i~t) (2.1)

where p(x,t) is the time-harmonic response, which is the response due to
exp(-ijt) time variation of the excitation; = 2-f is the radian frequency
of oscillation; S(x,J) is the complex response spectrum. A diagram
illustrating typical responses is shown in Figure 1.

The transient response for separable time variation Q(t) of the excitation
is simply

p(x,t) = f Q(,j)S(x,L)exp(-iit)dw (2.2)

where Q((,) is the transform of Q(t), viz

)= (1/2)0 Q(t)exp(i, t)dt (2.3)

in which the excitation Q(t) is assumed to vanish outside the time interval
t = O,T.

Equation (2.2) can be evaluated numerically from user supplied values of
S(x,2 ) and Q(()). From a practical point of view it is better written as

p(x,t) =;'- Q(')S(x,,))exp(-io(t-t
0 ))dQ (2.4)



'I

where to is the transient response delay factor, introduced in order to
check for non-casual behaviour in the plotted time history; see Section 5
for numerical examples.

b. Far-Field Radiation

The solution of time-harmonic radiation/scattering problems in the
far-field is usually expressed in the form

p(R,9, ,t) = A(e,p,-)(exp(ikR)/R]exp(-iwt) (2.5)

in which p(R,O,q,t) is the time-harmonic pressure; (R,O,() are spherical
co-ordinates; k = w/c is the acoustic wavenumber where c is the sound
velocity in the fluid; A(u,c,_) is the angular distribution of the
radiation field. This equation is often evaluated at the reference
distance of one metre, but many computer codes simply evaluate A(t,,).

The transient pressure field for separable time variation Q(t) of the
excitation is simply

p(R,6, ,t) = (l/R) f- Q()A(e,¢,w)exp[ik(R-ct)]dw (2.6)

which is the same as equation (2.4) provided S(x,) = A(e,¢,w)/R, and
to = R/c.

For far-field transient radiation the standard reference distance of one
metre is chosen for the divisor, R. Note all responses are at relative
times because the far-field is really at infinity. This may cause
conceptual problems because in certain circumstances causality appears to
be violated, which is perhaps not the case. For instance, there may be the
expectation that the phase term (R-ct) will cause the transient pressure to
be zero before time t = R/c, but this may not be the case as supersonic
elastic waves travelling on the surface of the radiator could cause
radiation to leave a remote point and arrive at the observation point
before the direct travel time, see for example James (1). Because the
transient far-field pressure is invariant with respect to R-ct, it is
convenient to use this term simply as a device for shifting the excitation
in time. Thus, set t0 = Rp /c where Rp is large enough, greater than a

typical body dimension say, to include responses originating before t = 0.
This scheme is an especially valuable facility because the integration
algorithm, described in Section 4, produces responses at equidistant times,
starting at relative time t = 0, which means that responses originating
before t = 0 are lost, unless a sufficiently large value of R is chosen.

p
c. Far-Field Scattering

For a time varying plane wave, incident at the angles (ei,i), the

insonification is of the form

Pi(x y 'z t ) = Pi( o)exp(-ikoi)exp(-iwt)dw (2.7)
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where
ai = x.sin( i)cos(pi)+y.sin(.i)sin(pi)+z.cos(8i) (2.8)

and

Pi(x,y,z,t) = Piexp(-iki)exp(-iwt) (2.9)

is the incident pressure excitation used in the time-harmonic problem.

Let the scatterer be surrounded by a sphere of radius L. The point on this
sphere first met by the incident plane wave is xs = L.sin(e i)cos(Qi),

Ys = L.sin(.i)sin(.i) and zs = L.cos(ai). At this point the incident

pressure wave is obtained from equation (2.7) as

pi(xsyszst) = f- P.(.)exp(-ikL)exp(-iwt)& (2.10)

Let this incident wave be the real valued pressure pulse of finite
duration,

Pi(xsyszs,t) = Q(t), for 0<t<T

= 0, for t<0 and t>T (2.11)

to give, on taking the inverse Fourier transform,

Pi() = [exp(ikL)/2,]:T Q(t)exp(i~t)dt (2.12)

= exp(ikL)Q(c)

The transient pressure scattered to the far-field is now synthesized from
the time-harmonic pressure equation (2.5) as the integral

= (l/R)f Q()A(9,,w)exp[ik(L+R-ct)]&L (2.13)

which is the same as equation (2.4) provided S(x,w) = A(u,¢, )/R and
to = (L+R)/c. As before set t0 = Rp/c where Rp is chosen large enough,

> 3L say, to include responses originating before t = 0.

3. TRANSFORMS OF EXCITATIONS IN TIME

a. Imoulse

The impulse applied at t = 0 is defined as

Q(t) = PM(t) (3.1)

where P is the magnitude of the impulse. Its transform is obtained from
equation (2.3) as

Q(0) = P/2, (3.2)

3



b. Heaviside

The Heaviside excitation applied at t =0 is defined as

Q(t) = F., for 0<t<- (3.3)

Q(t) = 0, for t<0

Its principal value transform is

Q(j) = F oi/(2,,,) (3.4)

C. Sine Wave

The sine wave which is switched on at t =0 and switched off at t =T is
defined as

Q(t) = F 0 sin( 0 t), for 0<t<T (3.5)

Q(t) = 0, for t<0 and t>,T

the time for one cycle being 1/f 0 = 2 /,-j. Its transform is

Q(_) = (F0/7[x~_~isn_0T- o(,0T + Y02 2 (3.6)

d. Squared Sine Wave

The squared sine wave which is switched on at t 0 and off at t =T is
defined as

Q(t) = F Osin 2 (,0 t), for 0<t<T (3.7)

Q(t) =0, for t<0 and t>T

the time for a half-cycle (one loop) being 1/2f0 = /_ O Its transform is

Q(,,)) (F 0 /4Triw)[exp(i,6T)-1] (3.8)

-(F0 /4r) [exp(iwT){i-cos( 0 T)+2w,)sin(2 0 T) }L]/(4,0
2

- 2)

e. Attenuated Sine Wave

The attenuated sine wave which is switched on at t = 0 and off at t =T is
defined as

Q(t) =F 0exp(-at)sin(.)0 t), for 0<t'zT (3.9)

Q(t) =0, for t<0 and t>T

4



the time for one cycle being 1/f0 = 2i/w 0. Its transform is

Q() =(F 0 /27)[exp(iXT){iXsin(w 0 T)-w 0 cos(w0 T)}+wo0 ]/(w2-X
2)

in which X = w+ia, with lal>O. (3.10)

f. Triangular Pulse

The triangular pulse which is switched on at t = 0 and off at t T is
defined as

Q(t) = (2F0/T)t, for t = 0<t<T/2

Q(t) = -(2F 0/T)t+2F0 , for T/2<t<T (3.11)

Q(t) = 0, for t<0 and t>T

Its transform is

Q(w) = (-2Fo/2Tr 2T)[1-exp(iwT/2)]2  (3.12)

g. Rectangular Pulse

The square pulse which is switched on at t = 0 and off at t = T is defined
as

Q(t) = F0, for 0<t<T (3.13)

Q(t) = 0, f z t<0 and t>T

Its transform is

Q(w) = (Fo/2irii)[exp(iwT)-1] (3.14)

This pulse may be of more practical value than the impulse and the
Heaviside excitations in a. and b. above.

h. G.ussian AM Sine Wave

The Gaussian amplitude modulated sine wave which is switched on at t = 0
and off at t = T is defined as

Q(t) = F0 exp(-at
2)sin(w0 t), for 0<t<T

(3.15)
Q(t) = 0, for t<0 and t>T

Its transform has no simple closed form solution, thus it is obtained by
numerical integration of equation (2.3).
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i. Linear Sweep FM Sine Wave

The linear swept, frequency modulated, sine wave which is switched on at
t = 0 and off at t = T is defined as

Q(t) = F0sin(at+bt
2 ), for O<t<T (3.16)

Q(t) = 0, for t<O and t>T

in which a+2bt, the differential of the argument, is defined as the
instantaneous frequency. Let w0 and wT be the lower and upper frequencies

of the sweep, then a = w0 and b = (wT-wO)/2T. The transform of this
excitation has no simple closed form solution so it is also obtained by
numerical integration.

j. User Defined Excitation

The Fourier transform of a user selected transient excitation, for example
the amplitude and frequency modulated sine wave a(t)sin(b(t)), can be
obtained by numerical quadrature of equation (2.3). This user pulse is
trivially inserted into the computer program (mentioned in Section 5) by
following the coding of excitations h. and i., provided the pulse
discontinuities, if any, are at the limits (0,T) of the integral. The
coding evaluates integral transforms by Simpson's rule applied to M equally
spaced values of the excitation. When the excitation has interior
discontinuities the integration range should be split into separate
intervals, bounded by the discontinuities.

4. FFT EVALUATION OF FOURIER INTEGRAL

The discretized version of equation (2.4), which is of the form

F(t) = ,' H(,)exp(-i t)d,. (4.1)

with H(w)=Q(w)S(x,w)exp(iot0 ) has been given by Cooley et al. (3) as

F(tj) = 5 E N-1 Gkexp(-27ijk/N), tj=jct, j=O, N-i (4.2)
k=O Gkex j=k/)

with

SGk zp = - . H(kow+Np6w) (4.3)

N is an integer power of two in order to be compatible with the fast
Fourier transform algorithm (4), tor which the sampling intervals in
frequency and in time, 6w and 6t, are inextricably linked by the equation

6w = 27/N5t (4.4)

Thus, the infinite range of integration has been divided into intervals of
length N6w to allow construction of a quadrature formula which requires a
single application of the FFT algorithm to evaluate the integral at
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N aistinct values of the time t. The time series is periodic, viz F(t.)

F(tj+N), but provided the true time function decays sufficiently rapidly in

the interval t = O,N6t it may adequately be approximated by discrete
samples derived from the FFT quadrature formula.

Some trial and error is usually necessary before the constants required for
numerical integration are finally selected. The following suggestions may
be found useful:

a. First, select the sampling interval in frequency, 6w, and the
upper limit of integration, wm, either by a guess or from prior

knowledge of the spectrum H(w). Choose N (power of two) and 5t in
accordance with equation (4.4).

b. Stop the summation, in equation (4.3), at the integer value
(minimum 1) pm which is greater or equal to Km/N6w. Note that this

may re-define the upper limit of integration as wm:pmN6 w.

c. Use of the relation H(-w)=H*(w), reflecting a real valued
function F(t), will halve computation times.

d. Use not more than the first N/2, say, values of the time function
for plotting, as aliasing might have affected the values at the end of
the range.

e. If the time history plot is obviously in error, being
significantly non-casual for instance, then perhaps 5, is too large or
uim is too small.

f. When the spectrum H( ) is computationally expensive it can be
extended with zeros, in order to enhance the resolution in time. Also
the number of costly computations of H(.,) can be kept to a minimum if
an interpolation scheme is used.

5. NUMERICAL EXAMPLES

a. General

A FORTRAN program has been written to evaluate the Fourier integral

p(x,t) = Q(w)S(x,w)exp(-iw(t-t0 ))dw

numerically from a user supplied array of the discretized spectrum S(x,),
at positive values of w, and a user selected excitation Q(t). This user
supplied array need not be at equal frequency intervals as quadratic
interpolation is used to find values required for iumerical integration by
FFT. Interpolation is especially important when time-harmonic responses
are costly. For instance, if a spectrum obtained by the finite element
method has sharp peaks it may be desirable to form a composite spectrum
from a crude resolution over the entire frequency range combined with
several highly resolved regions where peaks are dominant. The program
automatically pads the user supplied spectrum with zeros if its highest
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frequency is less than the maximum frequency wm=PmN6w in the FFT quadrature
formula. This useful feature allows selection of a time resolution which
is small enough to obtain smooth plots of the transient response, without
the added expense of unnecessary high frequency computations of S(W).

For the numerical examples the following table summarizes the sampling
constants used, frequency values being in hertz:

Spectrum Constants FFT Constants

Fig; NF i FMIN FMAX f P N t f f

2a 1001 0.25 1000.0 1.0 1 8192 0.000500 0.244 2000
2b 201 0.25 1000.0 15.0 8192 0.000500 0.244 8000
3 1001 0.25 1000.0 1.0 1 16384 0.000125 0.244 8000
4 1001 0.25 1000.0 1.0 1 16384 I0.000125 0.244 2000
5 501 1.00 1 1000.0 2.0 1 2048 0.000250 1.953 4000
6 1001 10.0 1 1000.0 .99 1 8192 0.000200 0.610 5000

where for the time-harmonic spectrum constants, NF is the number of
frequency values ranging from FMIN to FMAX with a resolution of 5f; and for
the FFT constants fm is the upper frequency limit of integration. Padding
is brought into effect in all examples because the upper frequency limit in
the FFT constants is greater than the upper frequency limit in the spectrum
constants. At the upper frequency limit of each spectrum the product
Q(w)S(w) is small enough to allow truncation of the Fourier integral
without any significant loss of accuracy. Computational times for aMl
examples are trivial, when compared to the times needed to evaluate the
spectra S(w).

When the material is steel the following SI units are used; Young's modulus
19.5 x 1010, Poisson's ratio 0.29, shear modulus 7.558 x 1010 and density
7700: water has density 1000 and sound velocity 1500.

b. Impulse Response of Mass-Spring

In the first example the grounded, heavily damped, mass and spring system
shown in Figure 2 is 3ubject to a unit impulse force. The constants in
SI units are mass 10, stiffness 1.0 x 108 and hysteretic loss factor 0.1.
The displacement response spectrum S(w) was calculated by a program, called
COUPLE (5), which evaluates the response of a complex dynamical system by
combining dynamic stiffness matrices of simple dynamical systems. The
spectrum S(w) is smooth except in the region of the mass/spring resonant
frequency at 50.3 Hz. The spectrum Q(w) of the excitation is flat.

The impulse response is shown in Figure 2a, the time delay being selected
to start the response at t = 80 ms. It is in excellent agreement with
Milne (6) who shows mathematically and demonstrates numerically that the
very small non-causal response just before t = 80 ms is due to the
selection of hysteretic damping. A plot (not shown here) has also been
obtained in which the damping is viscous rather than hysteretic: the
non-causal response, as expected, is not present.
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Figure 2b shows non-causal response behaviour introduced by under-sampling
the response spectrum S(w). In this case the frequency spacing in S(w) is
too large for accurate interpolation. The response is acceptable for
practical computations, but it could be improved dramatically by inserting
about four additional S(w) values centred on the 50.3 Hz natural frequency.

c. Axial resnonse of FM Excited Beam

In the second example the uniform beam shown in Figure 3 is excited, in the
axial direction, by a linear FM sine wave force of unit amplitude whose
frequency sweeps from 50 to 100 Hz in 20 ms; see excitation in Figure 1.
The steel beam is of length 20, area cross-section 0.012996 and has an
hysteretic loss-factor of 0.01. The acceleration response spectrum S(u) at
each of the beam tips was calculated by COUPLE. They vary rapidly, with
prominent resonances at 126 Hz spacing. The spectrum Q(w) of the
excitation drops rapidly above 400 Hz.

The axial acceleration responses at the ends of the beam are shown in
Figure 3, the time delay being selected to start the responses at
t = 10 ms. The responses are substantially causal before t = 10 ms. The
response of the left-hand-side tip in Figure 3a resembles the excitation
initially, and then extended ringing is evident, the beating being due to
interaction among the first three resonances. Compare with the response of
the right-hand-side tip in Figure 3b: the plots are almost identical after
relative time 40 ms, when allowance is made for a delay of 4 ms for the
wave to reach the far end of the beam at the longitudinal wave speed of
5032 ms-'; levels in the former plot being just a fraction higher because
of the effect of damping.

d. Imoact Response of Isolation System

In the third example the simple isolation system shown in Figure 4 is
excited at its base by a unit triangular pulse force which is on for 10 ms.
The machine is modelled as a steel Timoshenko beam in bending with length
1.0, area cross-section 0.012996, moment of area in bending 1.407 x 10-5,
hysteretic loss-factor 0.01 and shear correction factor 0.822. The
isolators are modelled as simple springs, which do not transmit bending
moments, of stiffness 0.333 x 108 and loss-factor 0.01. The foundation is
modelled as an infinite steel plate of thickness 0.01 and loss-factor 0.02.
The vertical acceleration responses S(w) were calculated by COUPLE. They
vary slowly except for a prominent peak at 564 Hz which is due to the first
bending resonance of the beam. There is no sharp mass-spring resonance
because the machine is mounted on a low impedance, but highly resistive,
foundation. The spectrum Q(w) of the excitation drops smoothly to zero at
200 Hz and its first side lobe at 300 Hz is 27 dB down.

The vertical acceleration responses of the tips of the beam are shown in
Figure 4, the time delay being selected to start the responses at
t = 80 ms. The response of the left-hand-side tip in Figure 4a resembles
the excitation, with small perturbations, for the first 10 ms and then
extended ringing is evident. Compare with the response of the right-hand-
side tip in Figure 4b: the initial response is of opposite phase while the
extended ringing is of the same phase. These observations are consistent
with the early response being dominated by the heave and pitch modes of the
bem and the later response being due to ringing at the fundamental beam
resonant frequency. Interaction through the water loaded plate is probably
small.

9



e. Radiation and Scattering of Shell

The fourth example is of far-field radiation from and scattering by the
thin elastic steel shell shown in Figure 5. The excitation is a transient
force or plane wave, of unit amplitude, which has the form of a 300 Hz sine
wave which is on for one cycle. Shell constants are radius 1.0, thickness
0.01 and hysteretic loss-factor 0.01. Radiation and scattering spectra
S(w) were calculated from closed-form theoretical expressions (7,8). They
vary rapidly in the mid-frequency regime due to resonance effects. The
spectrum Q(w) of the excitaticn has a broad lobe near to 250 Hz and its
first side lobe near 725 Hz is 18 dB down.

Figure 5 shows plots of the far-field pressure transients. Small ripples
at times before 15 ms are caused by premature truncation of the spectra
S(w). For the radiation transient the initial pressure has the same phase
as the excitation, probably due to the force being applied directly to the
water. For the scattering transient the initial pressure has the opposite
phase, probably due to the incident wave initially seeing a pressure
release shell. Extended ringing caused by resonances is very marked when
it is recalled that the excitation lasts for only 3.3 ms.

These plots also appear in the earlier publication (2) and there they are
accompanied by plots of spectra S(w) derived from both closed-form and
finite element solutions.

f. Radiation from Water-Filled Pipe

The final example is of far-field airborne sound radiation from the
water-filled steel pipe shown in Figure 6. The excitation is a transient
point source, of unit amplitude, which has the form of a 250 Hz sine wave
which is switched on for either one cycle or forty cycles. The pipe has
radius 0.10, thickness 0.005 and hysteretic loss-factor 0.01. The
radiation spectrum S(w) was calculated from closed-form theoretical
expressions (9). It varies smoothly except for sharp resonances at 225 and
685 Hz. The spectrum Q(w) of the excitation has its main lobe near 250 Hz.
Figure 6 shows plots of the far-fieid pressure transients. Small ripples
at times before the main response starts are caused by premature truncation
of the spectra S(w). In Figure 6a th excitation is a single cycle sine
wave; the initial response closely rsembles the excitation, and the later
response is dominated by slowly decaying ringing of the 225 Hz resonance.
In Figure 6b the rapid transition to a near steady state is shown. The
beating, slowly decreasing with time around the time-harmonic level of
± 0.44, is caused by interaction between the continuous excitation and the
decaying resonance transient. When the excitation is switched off after
40 cycles the amplitude drops rapidly, leaving decaying ringing due to the
resonance transient.

6. CONCLUDING REMARKS

Transient response (motion, radiation, scattering, etc) of a dynamical
system can be expressed as a Fourier transform over frequency of the
time-harmonic pressure weighted by the transform of the time varying part
of the excitation, assumed separable in space and time. This transform is
evaluated numerically by an application of the FFT algorithm. The main
features that have arisen from the work reported herein are as follows:

10



a. A FORTRAN program which evaluates a transient response from a
user supplied array of time-harmonic responses, which need not be at
equidistant frequency intervals as interpolation is used to obtain the
values required for numerical integration. The array of pressures may
be extended automatically with zeros in order to improve resolution in
time. Computer time is trivial.

b. A number of basic transient excitations which can be selected by
the user of the program. It is not difficult to insert additional
excitations into the computer program, even if closed-form expressions
are not available for their transforms, as a scheme for numerical
integration is built into the program.

c. Numerical examples of transient responses which provide
guidelines for the program's use and also demonstrate that it is a
powerful research tool.

Computations of transient response of linear systems are usually done
either by 'time marching' on the original time-dependent differential
equations (or matrices) or by Fourier transform of the time-harmonic
solutions, as herein. For general response calculations the latter method
would appear to have an advantage not only because computer programs for
time-harmonic problems are widely available but also because the appearance
of non-causal responses are an indication of errors, usually due to
under-sampling or premature truncation of the time-harmonic spectrum S(w).
Time marching methods implicitly assume cpusality.

Future extensions to the program should include a limited capability for
filtering the transient response, as is usually the case in physical
measurement. A causal filter, with frequency response spectrum F(w), is
easily inserted in the computer program as the transient response is now
the Fourier transform of F(w)Q(w)S(w).

11
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a non-causal response.
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